Rhizobial peptidase HrrP cleaves host-encoded signaling peptides and mediates symbiotic compatibility.

نویسندگان

  • Paul A Price
  • Houston R Tanner
  • Brett A Dillon
  • Mohammed Shabab
  • Graham C Walker
  • Joel S Griffitts
چکیده

Legume-rhizobium pairs are often observed that produce symbiotic root nodules but fail to fix nitrogen. Using the Sinorhizobium meliloti and Medicago truncatula symbiotic system, we previously described several naturally occurring accessory plasmids capable of disrupting the late stages of nodule development while enhancing bacterial proliferation within the nodule. We report here that host range restriction peptidase (hrrP), a gene found on one of these plasmids, is capable of conferring both these properties. hrrP encodes an M16A family metallopeptidase whose catalytic activity is required for these symbiotic effects. The ability of hrrP to suppress nitrogen fixation is conditioned upon the genotypes of both the host plant and the hrrP-expressing rhizobial strain, suggesting its involvement in symbiotic communication. Purified HrrP protein is capable of degrading a range of nodule-specific cysteine-rich (NCR) peptides encoded by M. truncatula. NCR peptides are crucial signals used by M. truncatula for inducing and maintaining rhizobial differentiation within nodules, as demonstrated in the accompanying article [Horváth B, et al. (2015) Proc Natl Acad Sci USA, 10.1073/pnas.1500777112]. The expression pattern of hrrP and its effects on rhizobial morphology are consistent with the NCR peptide cleavage model. This work points to a symbiotic dialogue involving a complex ensemble of host-derived signaling peptides and bacterial modifier enzymes capable of adjusting signal strength, sometimes with exploitative outcomes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compatibility of rhizobial genotypes within natural populations of Rhizobium leguminosarum biovar viciae for nodulation of host legumes.

Populations of Rhizobium leguminosarum biovar viciae were sampled from two bulk soils, rhizosphere, and nodules of host legumes, fava bean (Vicia faba) and pea (Pisum sativum) grown in the same soils. Additional populations nodulating peas, fava beans, and vetches (Vicia sativa) grown in other soils and fava bean-nodulating strains from various geographic sites were also analyzed. The rhizobia ...

متن کامل

Symbiovars in rhizobia reflect bacterial adaptation to legumes.

Legume specificity is encoded in rhizobial genetic elements that may be transferred among species and genera. Dissemination (by lateral transfer) of gene assemblies dictating host range accounts for the existence of the same biological variant (biovar) in distinct microbiological species. Different alternative biovars may exist in a single species expanding their adaptation to different niches ...

متن کامل

Lotus japonicus alters in planta fitness of Mesorhizobium loti dependent on symbiotic nitrogen fixation

Rhizobial bacteria are known for their capacity to fix nitrogen for legume hosts. However ineffective rhizobial genotypes exist and can trigger the formation of nodules but fix little if any nitrogen for hosts. Legumes must employ mechanisms to minimize exploitation by the ineffective rhizobial genotypes to limit fitness costs and stabilize the symbiosis. Here we address two key questions about...

متن کامل

Symbiotic Effectiveness of Rhizobial Mutualists Varies in Interactions with Native Australian Legume Genera

BACKGROUND AND OBJECTIVES Interactions between plants and beneficial soil organisms (e.g. rhizobial bacteria, mycorrhizal fungi) are models for investigating the ecological impacts of such associations in plant communities, and the evolution and maintenance of variation in mutualisms (e.g. host specificity and the level of benefits provided). With relatively few exceptions, variation in symbiot...

متن کامل

Nodulation outer proteins: double-edged swords of symbiotic rhizobia.

Rhizobia are nitrogen-fixing bacteria that establish a nodule symbiosis with legumes. Nodule formation depends on signals and surface determinants produced by both symbiotic partners. Among them, rhizobial Nops (nodulation outer proteins) play a crucial symbiotic role in many strain-host combinations. Nops are defined as proteins secreted via a rhizobial T3SS (type III secretion system). Functi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 112 49  شماره 

صفحات  -

تاریخ انتشار 2015